RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

FIRST YEAR

B.A./B.SC. FIRST SEMESTER (July – December), 2012 Mid-Semester Examination, September 2012

Date : 10/09/2012

CHEMISTRY (Honours)

Time : 11 am – 1 pm Paper : I Full Marks : 50

[Use Separate Answer Script for each Group]

Group - A

[1+1]				
/ ₂ +1 ¹ / ₂]				
OR				
[2]				
$[1\frac{1}{2}]$				
$[1\frac{1}{2}]$				
[2]				
[2]				
[2]				
en				
[2]				
on [2+2]				
[1]				
nd				
or				
[3]				
[2]				
en [3]				
[1]				
$\underline{Group - B}$				
i f				

(Answer any one question)

3. a) Derive the major resonance structures for each of the following species and determine which structure is most important in each case. [3]

b) The pK_a values of following acid 1 and 2 are 6.07 and 5.67 respectively. Account the fact.

c) Arrange the following C-H bonds in order of decreasing bond energy with reasons : [2] and CH_3CH_2-H , $\equiv C-H_2=C-H$

[3]

[3]

[3]

[3]

[3]

d) Assign R/S configurational designation at the chiral centre of the following molecules showing the priority sequence. [2]

e) Assign E/Z and R/S designation at the appropriate centres.

- f) Write the structure of all the stereoisomers of hepta -2, 5 dien 4 ol. Assign R/S and E/Z designation at the appropriate centres. [3]
- 4. a) Draw the orbital pictures of the following compounds indicating the state of hybridization of C, N, and O atoms. [3]
 - (i) $CH_3 CH = CH CN$ (trans) (ii) (E)- $HC \equiv C CH = NMe$
 - b) Compound I does not exist but other exist. —Explain.

- c) Predict the relative order of C-C bond lengths in propane, propene and propyne with explanation. [2]
- d) Write the structure of the following compounds:
 - i) Butanone (E) oxime
 - ii) (2E,4Z) 2, 4 Hexadienoic acid
 - iii) Meso butane 2, 3 diol (Newman projection)
- e) Cite examples through their structures according to the instructions given
 - i) A molecule having S_2 -axis showing the axis.
 - ii) A molecule having C₃-axis showing the axis.
- f) Justify or criticise: L-alanine must be laevorotatory. [2]

$\underline{Group-C}$

(Answer <u>any one</u> from each unit)

<u>Unit - I</u>

5.	a)	For 1.00 mol CH ₄ (g) at 0°C and 1 atm, find the number of molecules whose speed lies in the range 90.000 m/s to 90.002 m/s.	[3]		
	b)	Write down the expression of $g(v_x)$ and find out $\langle v_x \rangle$ and $\langle v_x \rangle$. Plot $g(v_x)$ vs v_x at two different temperatures.	3+2]		
6.	a)	Find out expressions of $\langle v^2 \rangle$ for a 2D-gas. And $\langle v \rangle$ for 3D-gas.	[4]		
	b)	Starting from the expression of Maxwell's distribution of molecular speeds in 3D, find out an expression of the most probable speed.	[2]		
	c)	Draw G(v) vs. v for He and CH ₄ using the same pair of axes and explain the curves.	[2]		
	<u>Unit - II</u>				
7.	a)	Show that for ideal gas $C_P - C_V = R$.	[3]		
	b)	Derive a relation that shows how enthalpy change of a process like the conversion of A to B varies with temperature.	[2]		
	c)	Infinitesimally small change of a function $f(x,y)$ is given as $df(x,y) = xdx + ydy$ (x, y are independent variables). Show whether or not $f(x,y)$ is a state function.	[2]		
	d)	Compare (graphically) the works done in an isothermal and an adiabatic expansion process (the initial state and the final volumes being the same).	[1]		
8.	a)	Starting with the mathematical definition of the first law of thermodynamics show that— i) Under adiabatic condition work done is independent of path.			
		ii) Energy of the universe is constant.	[3]		
	b)	Compare (graphically) the works done in a single step versus a multistep process in an expansion process (initial and final state being the same).	[2]		
	c)	Show that for a constant pressure process $dH = q + w$ (non-mechanical).	[2]		
	d)	An ideal gas is expanded against vacuum from a pressure, volume (P, V) to (P',V') under adiabatic condition. Calculate the works done by the system and change of internal energy of the system for the process.			